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SUMMARY

The paper presents an adaptive analysis within the framework of the node-based smoothed finite element
method (NS-FEM) using triangular elements. An error indicator based on the recovery strain is used
and shown to be asymptotically exact by an effectivity index and numerical results. A simple refinement
strategy using the newest node bisection is briefly presented. The numerical results of some benchmark
problems show that the present adaptive procedure can accurately catch the appearance of the steep
gradient of stresses and the occurrence of refinement is concentrated properly. The energy error norms of
adaptive models for both NS-FEM and FEM obtain higher convergence rate compared with the uniformly
refined models, but the results of NS-FEM are better and achieve higher convergence rate than those of
FEM. The effectivity index of NS-FEM is also closer and approaches to unity faster than that of FEM. The
upper bound property in the strain energy of NS-FEM is always verified during the adaptive procedure.
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1. INTRODUCTION

Adaptive analysis has been used in the traditional finite element method (FEM) and various proce-
dures for error estimate and refinement have been developed. Among error estimators, residual-
based and recovery-based ones are the most popular. The residual-based error estimators have
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been developed by considering local residuals of the numerical solutions, in a patch of elements
or in a single element. This type of error estimators was originally introduced by Babuska and
Rheinboldt [1, 2], and then developed by many others researchers such as Bank and Weiser [3],
Ainsworth and Oden [4, 5]. Recovery-based error estimators have been studied by using of the
recovery solutions derived from a posteriori treatment of the numerical results to obtain more
accurate representation of the unknowns. This type of error estimators was introduced and devel-
oped by Zienkiewicz and Zhu [6–8] and has been widely used in the FEM. In addition, error
estimators based on the construction of a statically admissible stress field were also introduced
by Ladevèze [9–11]. Once the error estimator process has been set up, it is natural to seek a
refinement scheme by which the design can be improved. There are various procedures of the
refinement and they may be broadly classified into three categories: h-type refinement, p-type
refinement and r -type refinement [12, 13]. In an h-type refinement, the same class of elements will
continue to be used but more elements are needed at the necessary positions to provide maximum
economy in reaching the desired solution. In a p-type refinement, the same elements are used but
the order of the polynomial functions is increased. In a r -type refinement, the nodes of elements
are relocated but the mesh connectivity is kept unchanged [13]. Recently, an e-type refinement
(enrichment adaptivity) that uses an extended global derivative recovery for enriched FEMs such
as extended finite element method (XFEM) is also proposed [14–17]. The e-type refinement is
shown to be simple and suitable to industrial applications.

In the other front of development of numerical methods, a conforming nodal integration technique
has been proposed by Chen et al. [18] to stabilize the solutions in the context of the meshfree
method and then applied in the natural-element method [19]. Liu et al. have applied this technique
to formulate the linear conforming point interpolation method (LC-PIM) [20] and the linearly
conforming radial point interpolation method [21]. Applying the same idea to the FEM, an element-
based smoothed finite element method (CS-FEM or SFEM) [22–25], and node-based smoothed
finite element method (NS-FEM) [24] have also been formulated.

In the CS-FEM, the strain smoothing operation and the integration of the weak form are
performed over smoothing cells (SCs) located inside the quadrilateral elements, as shown in
Figure 1. The CS-FEM has been developed for general n-sided polygonal elements [26], dynamic
analyses [27], incompressible materials using selective integration [28, 29], and further extended
for plate and shell analyses [30–34], respectively. In addition, CS-FEM has also been coupled to
the XFEM [35] to solve fracture mechanics problems in 2D continuum and plates [36].

In the NS-FEM, the strain smoothing operation and the integration of the weak form are
performed over the smoothing cells associated with nodes, and methods can be applied easily
to triangular, 4-node quadrilateral, n-sided polygonal elements for 2D problems and tetrahedral
elements for 3D problems. For n-sided polygonal elements, the cell �(k) associated with the node
k is created by connecting sequentially the mid-edge-point to the central points of the surrounding
n-sided polygonal elements of the node k as shown in Figure 2. When only linear triangular or
tetrahedral elements are used, the NS-FEM produces the same results as the method proposed
by Dohrmann et al. [37] or to the LC-PIM by Liu et al. [20] using linear interpolation. Liu and
Zhang [38] have provided an intuitive explanation and showed numerically that the LC-PIM can
produce an upper bound to the exact solution in the strain energy, when a reasonably fine mesh is
used. The upper bound property was also found in the NS-FEM by Liu et al. [24]. Both upper and
lower bounds in the strain energy for elastic solid mechanics problems can now be obtained by
combining the NS-FEM with the CS-FEM (for n-sided polygonal elements) or with the FEM (for
triangular or 4-node quadrilateral elements). Further developed, a nearly exact solution in strain
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Figure 1. Division of quadrilateral element into the smoothing cells (SCs) in CS-FEM by
connecting the mid-edge-points of opposite edges of smoothing cells: (a) 1 SC; (b) 2 SCs;

(c) 3 SCs; (d) 4 SCs; (e) 8 SCs; and (f) 16 SCs.

node k

cell (k)

(k)Γ

: central point of n-sided polygonal element : field node : mid-edge point

Figure 2. n-sided polygonal elements and the smoothing cell (shaded area) associated
with nodes in the NS-FEM.

energy using triangular and tetrahedral elements is also proposed by Liu et al. [39] by combining
a scale factor �∈[0,1] with the NS-FEM and the FEM to give a so-called the alpha finite element
method (�FEM).
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Figure 3. Triangular elements and the smoothing domains (shaded areas)
associated with edges in the ES-FEM.

Besides the upper bound property in the strain energy, the NS-FEM also possesses the others
interesting properties: (i) it is immune from the volumetric locking; (ii) it allows the use of
polygonal elements with an arbitrary number of sides [24]. In the NS-FEM, the integration on
the smoothing domains is transformed to line integrations along the edges of the SC and such an
integration can be evaluated using directly the values of shape functions (not their derivatives).

Recently, an edge-based smoothed finite element method (ES-FEM) was also been formulated
by Liu et al. [40] for static, free and forced vibration analyses in 2D problems. The ES-FEM
uses triangular elements that can be generated automatically for complicated domains. In the
ES-FEM, the system stiffness matrix is computed using strains smoothed over the smoothing
domains associated with the edges of the triangles. For triangular elements, the smoothing domain
�(k) associated with the edge k is created by connecting two endpoints of the edge to the centroids of
adjacent elements as shown in Figure 3. In addition, the idea of the ES-FEM is quite straightforward
to extend for the n-sided polygonal elements [41] and for the 3D problems using tetrahedral
elements to give a so-called the face-based smoothed finite element method [42]. ES-FEM has
been developed for 2D piezoelectric analysis [43].

The objective of the present work is to develop an effective adaptive procedure for NS-FEM
using triangular elements. An error indicator based on the recovery strain is proposed and a simple
refinement strategy using the newest node bisection is also briefly presented. An effectivity index
and numerical results are provided to show that the error indicator proposed is asymptotically
exact, and the recovery strain is a reliable representation of the analytical strain, especially for the
highly singular problems.

The paper is outlined as follows. In Section 2, the idea of the NS-FEM based on triangle
elements is briefly presented. An adaptive procedure including an error indicator based on the

Copyright q 2009 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (2009)
DOI: 10.1002/cnm



ADAPTIVE ANALYSIS USING THE NS-FEM

recovery strain and a simple refinement strategy is described in Section 3. In Section 4, some
numerical examples are conducted and discussed to demonstrate the effectiveness of the proposed
adaptive procedure. Some concluding remarks are made in Section 5.

2. BRIEFING ON THE NS-FEM BASED ON TRIANGULAR ELEMENTS (NS-FEM-T3)

2.1. Briefing on the finite element method (FEM) [12, 44, 45]
The discrete equations of the FEM are derived from the Galerkin weak form and the integration
is performed on the basis of element as follows:∫

�
(∇s�u)TD(∇su)d�−

∫
�

�uTbd�−
∫

�t

�uT t̄d�=0 (1)

where b is the vector of external body forces, D is a symmetric positive-definite matrix of material
constants, t̄ is the prescribed traction vector on the natural boundary �t , u is trial functions, �u is
test functions and ∇su is the symmetric gradient of the displacement field.

The FEM uses the following trial and test functions:

uh(x)=
Nn∑
I=1

NI (x)dI , �uh(x)=
Nn∑
I=1

NI (x)�dI (2)

where Nn is the total number of nodes of the problem domain, dI is the nodal displacement vector
and NI (x) is a matrix of shape functions of I th node.

By substituting the approximations, uh and �uh , into the weak form and invoking the arbitrariness
of virtual nodal displacements, Equation (1) yields the discretized system of algebraic equations

KFEMd= f (3)

where KFEM is the system stiffness matrix, f is the element force vector that are assembled with
entries of

KFEM
IJ =

∫
�e

BT
IDBJ d� (4)

fI =
∫

�e

NT
I (x)bd�+

∫
�t

NT
I (x)t̄d� (5)

In Equation (4), the strain gradient matrix is defined as

BI (x)=∇sNI (x) (6)

that produces compatible strain fields. Using the triangular elements with the linear shape functions,
the strain gradient matrix BI (x) contains only constant entries. Equation (4) then becomes

KFEM
IJ =BT

IDBJ Ae (7)

where Ae=∫�e
d� is the area of the element.
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2.2. The NS-FEM based on triangular elements (NS-FEM-T3)

The NS-FEM works for polygonal elements of arbitrary sides [24]. Here we brief only the formu-
lation for triangular element (NS-FEM-T3).

Similar to the FEM, the NS-FEM also uses a mesh of elements. When 3-node triangular elements
are used, the shape functions used in the NS-FEM-T3 are also identical to those in the FEM-T3,
and hence the displacement field in the NS-FEM-T3 is also ensured to be continuous on the whole
problem domain. However, being different from the FEM-T3, which performs the integration
required in the weak form (1) on the elements, NS-FEM-T3 performs such the integration based
on the nodes, and strain smoothing technique [18] is used. In such a nodal integration process,
the problem domain � is divided into Nn smoothing cells �(k) associated with nodes k such that
�=∑Nn

k=1�(k) and �(i)∩�( j) =�, i �= j , in which Nn is the total number of field nodes located
in the entire problem domain. For triangular elements, the cell �(k) associated with the node
k is created by connecting sequentially the mid-edge-points to the centroids of the surrounding
triangular elements of the node k as shown in Figure 4. As a result, each triangular element will
be divided into three quadrilateral sub-domains and each quadrilateral sub-domain is attached with
the nearest field node. The cell �(k) associated with the node k is then created by combination of
each nearest quadrilateral sub-domain of all elements surrounding the node k.

Applying the node-based smoothing operation, the compatible strains e=∇su in Equation (1)
is used to create a smoothed strain on the cell �(k) associated with node k

ẽk =
∫

�(k)
e(x)�k(x)d�=

∫
�(k)

∇su(x)�k(x)d� (8)

node k

Γ

: field node : centroid of triangle : mid-edge point

(k)

(k)

cell

Figure 4. Triangular elements and smoothing cells (shaded area) associated with the nodes in the NS-FEM.
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where �k(x) is a given smoothing function that satisfies at least unity property∫
�(k)

�k(x)d�=1 (9)

Using the following constant smoothing function:

�k(x)=
{
1/A(k), x∈�(k)

0, x /∈�(k)
(10)

where A(k) =∫�(k) d� is the area of the cell �(k) and applying a divergence theorem, one can
obtain the smoothed strain that is constant over the domain �(k) as follows:

ẽk = 1

A(k)

∫
�(k)

u(x)n(k)(x)d� (11)

where �(k) is the boundary of the domain �(k) as shown in Figure 4, and n(k)(x) is the outward
normal vector matrix on the boundary �(k) and has the form

n(k)(x)=

⎡
⎢⎢⎣
n(k)
x 0

0 n(k)
y

n(k)
y n(k)

x

⎤
⎥⎥⎦ (12)

In the NS-FEM-T3, the trial function uh(x) is the same as in Equation (2) of the FEM and
therefore the force vector f in the NS-FEM-T3 is calculated in the same way as in the FEM.

Substituting Equation (2) into (11), the smoothed strain on the cell �(k) associated with node k
can be written in the following matrix form of nodal displacements:

ẽk = ∑
I∈N (k)

B̃I (xk)dI (13)

where N (k) is the set containing nodes that are directly connected to node k and B̃I (xk) is termed
as the smoothed strain gradient matrix on the cell �(k)

B̃I (xk)=

⎡
⎢⎢⎣
b̃Ix(xk) 0

0 b̃Iy(xk)

b̃Iy(xk) b̃Ix(xk)

⎤
⎥⎥⎦ (14)

and it is calculated numerically using

b̃Ih(xk)= 1

A(k)

∫
�(k)

NI (x)n
(k)
h (x)d� (h= x, y) (15)

Using the linear shape function of triangles as in Equation (2) of the FEM-T3, the displacement
field in the NS-FEM-T3 is linear compatible along the boundary �(k). Hence, one Gaussian point
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is sufficient for line integration along each segment of boundary �(k)
i ∈�(k), the above equation

can be further simplified to its algebraic form

b̃Ih(xk)= 1

A(k)

M∑
i=1

NI (xGPi )n(k)
ih l

(k)
i (h= x, y) (16)

where M is the total number of the boundary segments of �(k)
i , xGPi is the midpoint (Gaussian

point) of the boundary segment of �(k)
i , whose length and outward unit normal are denoted as l(k)i

and n(k)
ih , respectively.

The stiffness matrix K̃ of the system is then assembled by a similar process as in the FEM

K̃IJ=
Nn∑
k=1

K̃(k)
IJ (17)

where K̃(k)
IJ is the stiffness matrix associated with node k and is calculated by

K̃(k)
IJ =

∫
�k

B̃T
IDB̃J d�= B̃T

IDB̃J A
(k) (18)

Equation (16) implies that in the NS-FEM-T3, field gradients are computed directly only using
the values of shape functions themselves at some particular points along segments of boundary
�(k)
i and no derivative of shape function is needed.
When the linear shape functions for triangular elements are used, displacement field along the

boundaries �(k) of the domain �(k) is linear compatible. The values of the shape functions of these
Gauss points, e.g. point #a on segment A–B shown in Figure 5, are evaluated averagely using
two related points at two segment’s ends: points #A and #B. To facilitate for the computation, the
values of the shape functions at ending points of segments are performed explicitly as follows:
(1) for the point at the mid-side of the element, e.g. point #A on the side 1–2, the values of the
shape functions are evaluated averagely using two related field nodes: nodes #1 and #2; (2) for

1
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4 5

6

A
B

C

D

E

F
G

H

I

J
a

: field node : mid-edge point: centroid of triangle

node k

Γ(k)

(k)

Figure 5. Evaluation of values of shape functions at points located on the boundary of smoothing cell
associated with nodes in triangular elements.
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the point at the centroid of the element, e.g. point #B of the element 1–2–3, values of the shape
function are evaluated as [13 1

3
1
3 ], which is the average values using three related field nodes:

node #1, #2 and #3.
It should be mentioned that the purpose of introducing the centroid points is to facilitate the

evaluation of the shape function values at the Gauss points along the segments of the smoothing
domain. No extra degrees of freedom (DOF) are associated with these points. In other words, these
points carry no additional field variables. This means that the nodal unknowns in the NS-FEM-T3
are the same as those in the FEM-T3 of the same mesh.

2.3. A brief of properties of the NS-FEM

The following properties of the NS-FEM were presented by Liu et al. [24]. In this paper, we only
remind the main points.

Property 1: The NS-FEM can be derived straightforwardly from the modified Hellinger–Reissner
variational principle, with the smoothed strain vector ẽk and displacements uh(x) as independent
field variables, to give the stiffness matrix associated with nodes K̃(k)

IJ in the form of Equations (17)
and (18). The method is therefore variationally consistent.

Property 2: The strain energy E(d) obtained from the NS-FEM solution has the following
relationship with the exact strain energy:

E(d)�Eexact(d0) (19)

where d is the numerical solution of the NS-FEM, and d0 is the exact displacement sampled using
the exact displacement field u0.

Property 3: The NS-FEM possesses only ‘legal’ zero energy modes that represent the rigid
motions, and there exists no spurious zero energy mode.

Property 4: The NS-FEM is immune from the volumetric locking.

3. ADAPTIVE PROCEDURE

In an adaptive procedure, a good error indicator and an appropriate refinement strategy are two
important issues needed to be considered. In this present work, an error indicator based on the
recovery strain is proposed and shown to be asymptotically exact by an effectivity index and
numerical experiments. Then, a simple refinement strategy using the newest node bisection is
briefly presented.

3.1. Error indicator based on recovery strain

For each element �e, we will use

�e=‖∇u− ẽh‖L2(�e) (20)

as the error indicator, where ∇u is the exact strain and ẽh is the numerical strain of the element
in the NS-FEM-T3 as shown in Figure 6. However, to determine the error indicator (20) without
knowing the exact solution, a higher-order recovery strain Gu of ∇u need to be constructed using
only ẽh . This means that the approximation Gu has to be more accurate than ẽh in the meaning

‖∇u−Gu‖L2(�e)�C1h
�‖∇u− ẽh‖L2(�e), �>0 (21)
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Figure 6. (a) Stresses at three field nodes and three quadrilateral sub-domains of the element in the
NS-FEM and (b) division of the refined triangle into two sub-triangles using the newest node bisection.

Equation (21) can be verified if the following effectivity index �=‖ẽh−Gu‖L2(�e)/‖ẽh−∇u‖L2(�e),
which is a measure of the error estimate compared with the exact error, converges to unity when
h approaches zero [7, 8]. The verification process starts from

‖ẽh −Gu‖L2(�e) =‖(ẽh−∇u)−(Gu−∇u)‖L2(�e) (22)

Using the triangle inequality, we have

‖ẽh −∇u‖L2(�e)−‖Gu−∇u‖L2(�e)�‖ẽh−Gu‖L2(�e)�‖ẽh −∇u‖L2(�e)+‖Gu−∇u‖L2(�e) (23)

Then by dividing each term by ‖ẽh −∇u‖L2(�e), we obtain

1− ‖Gu−∇u‖L2(�e)

‖ẽh−∇u‖L2(�e)

���1+ ‖Gu−∇u‖L2(�e)

‖ẽh −∇u‖L2(�e)

(24)

As proved by Zienkiewicz and Zhu in [7, 8], Equation (21) is verified if the effectivity index
� approach 1 as h approaches zero. In that case, the recovery solution Gu converges at a higher
rate than the numerical solution ẽh , and we shall have asymptotically exact estimation: the error
‖Gu− ẽh‖L2(�e) will approach to ‖∇u− ẽh‖L2(�e).

In this paper, by using smoothed strain ẽh(x j ) defined in Equation (8) as the ‘nodal’ strain at
the node x j as shown in Figure 6, we construct a first-order recovery strain Gu for each element
by the following interpolation [46, 47]:

Gu=
3∑
j=1

N j (x)ẽ
h(x j ) (25)

where N j (x) are the same linear shape functions of triangular elements used to define uh in
Equation (2).

The numerical examples in Section 4 will illustrate clearly the effectiveness and reliability of the
error indicator (20) in which the exact strain ∇u is replaced by the first-order recovery strain Gu
in Equation (25). In numerical performance of the error indicator (20), the usual Gauss integration
with proper mapping procedure is performed for each of three quadrilateral sub-domains as shown
in Figure 6, and the summation over these three quadrilateral sub-domains is then performed for
the element.
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3.2. Refinement strategy

Let us first define the marking scheme used with the error indicator. Let

�2=
Ne∑
e=1

�2e (26)

be an global error indicator with all the elemental contributions �e associated with a triangle �e.
We will use the bulk marking process proposed by Dorfler [48] in which the marking set M that
contains the marked elements to be refined at a single step. Elements in set M should satisfy the
following criteria ∑

�e∈M
�2e���2 for some �∈ (0,1) (27)

A smaller � will result in a larger set M and hence a more refinement of triangles at one step,
and a larger � will result in a smaller set M and thus a more optimal mesh but more refinement
steps. Usually �=0.2÷0.5 is chosen.

Now, a refinement strategy using the newest node bisection is briefly presented [49, 50].
First, a process of labeling is performed. From a triangulation set � of the problem domain
�, for each triangle �e∈�, one node of �e is labeled as peak or newest node. The opposite
edge of the peak is called base or refinement edge as shown in Figure 6(b). Then the division of
the refined triangle into two sub-triangles using the newest node bisection is conducted as follows:

(i) a refined triangle is bisected to two new sub-triangles by connecting the peak to the midpoint
of the base as shown in Figure 6(b);

(ii) the new node created at a midpoint of a base is assigned to be the peak of both sub-triangles
as shown in Figure 6(b).

Once an initial triangulation is labeled, the proper triangulations inherit the label by the rule (ii)
such that the bisection process can continue. Refinement schemeusing thenewest nodebisectionwill
not lead to a degeneracy and is easy to implement since the conforming is ensured in themarking step.

4. NUMERICAL RESULTS

In order to simplify the notation, from this section until the end, we will shorten NS-FEM-T3 by
NS-FEM, and FEM-T3 by FEM.

To study the effectiveness of the present adaptive procedure, uniformly refined models of
NS-FEM are also considered. In addition, to emphasize the upper bound property of strain energy
of the NS-FEM, the results of the present method will be compared with those of the standard linear
FEM using both adaptive procedure and uniformly refined models. For the adaptive procedure
using the FEM, the same error indicator and refinement algorithm used in the adaptive procedure
of NS-FEM are used. However in the FEM, to obtain the first-order recovery strain Gu as shown
in Equation (25), we will use the simplest Zienkiewicz–Zhu recovery [6], in which the strains at
a node are the averaged strains at the centroids of the patch of elements surrounding the node.
Therefore, the comparison is done in a fair base.
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In some cases, in order to evaluate the accuracy and convergence rate of the present scheme,
the following energy norm is used:

‖e−eL‖L2 =
(
1

2

∫
�

(e−eL)TD(e−eL)d�

)1/2

=
(
1

2

Ne∑
e=1

∫
�e

(e−eL)TD(e−eL)d�

)1/2

(28)

where e is the analytical strain and eL is one of two strains: the numerical strain eh or first-order
recovery strain eRe≡Gu.

In order to evaluate the integral in Equation (28) for each triangular element �e, when eL is
the numerical strain of NS-FEM, the mapping procedure using Gauss integration on quadrilateral
sub-domains of triangles mentioned in the end of Section 3.1 is used, and the summation on three
quadrilateral sub-domains is done. However, in each quadrilateral sub-domain, a suitable number
of Gauss points depending on the order of the analytical solution will be used. Otherwise, when
eL is the numerical strain of FEM or the recovery strains eRe≡Gu of both NS-FEM and FEM, the
mapping procedure using Gauss integration is performed on triangular elements. In each triangle,
a suitable number of Gauss points depending on the order of the analytical solution will be used.

In addition, in adaptive analysis, in order to estimate the energy error norms by Equation (28)
without having the analytical strain, the recovery strain eRe≡Gu will be used to replace the
analytical strain. Note that the convergence rates of the energy error norms are calculated based
on the average length of sides of triangular elements.

4.1. Infinite plate with a circular hole

Figure 7 represents a plate with a central circular hole of radius a=1m, subjected to a unidirectional
tensile load of �=1.0N/m at infinity in the x-direction. Owing to its symmetry, only the upper
right quadrant of the plate is modeled. Plane strain condition is considered and E=1.0×103N/m2,
�=0.3. Symmetric conditions are imposed on the left and bottom edges, and the inner boundary
of the hole is traction free. The exact solution for the stress is [51]

�11 = 1− a2

r2

[
3

2
cos2�+cos4�

]
+ 3a4

2r4
cos4�

�22 = −a2

r2

[
1

2
cos2�−cos4�

]
− 3a4

2r4
cos4� (29)

Figure 7. Infinite plate with a circular hole and its quarter model.
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Figure 8. Energy error norms of the infinite plate with a circular hole (e1 in the vertical
axe represents for e or eRe, and e2 represents for eh or eRe).
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Figure 9. Effectivity index of the infinite plate with a circular hole.

�12 = −a2

r2

[
1

2
sin2�+sin4�

]
+ 3a4

2r4
sin4�

where (r,�) are the polar coordinates and � is measured counterclockwise from the positive x-axis.
Traction boundary conditions are imposed on the right (x =5.0) and top (y=5.0) edges based on
the exact solution Equation (29). The displacement components corresponding to the stresses are
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Figure 10. Convergence of strain energy in the infinite plate with a circular hole.
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Figure 11. Comparison of energy error norms in the infinite plate with a circular hole.
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(
−1) sin�+2

a

r
((1−
) sin�+sin3�)−2

a3

r3
sin3�

] (30)

where 	= E/(2(1+�)), 
 is defined in terms of Poisson’s ratio by 
=3−4� for plane strain cases.
First, one analysis about the accuracy and convergence rate of energy error norms, and effectivity

index of the error indicators of NS-FEM and FEM are performed by using uniformly refined
models. Three kinds of energy error norms are evaluated including the standard energy error
norm ‖e−eh‖L2 , recovery energy error norm ‖e−eRe‖L2 and a posteriori energy error norm
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Figure 12. Comparison of energy error norms and error estimators (20) in the infinite plate with a circular
hole (e1 in the vertical axe represents for e or eRe, and e2 represents for eh).
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Figure 13. Effectivity index (adaptive scheme) of NS-FEM and FEM in the
infinite plate with a circular hole.

‖eRe−eh‖L2 , where e
h is the numerical strain of methods, eRe≡Gu is the first-order recovery

strain and e is the analytical strain.
Figures 8 and 9 show four following remarks: (1) in each method, the recovery energy error

norm ‖e−eRe‖L2 are much more accurate than standard and posteriori energy error norms; (2)
for standard and posteriori energy error norms, the results of NS-FEM are more accurate than
those of FEM, and the convergence rates of NS-FEM are also higher than those of FEM; (3)
the recovery energy error norms ‖e−eRe‖L2 of both NS-FEM and FEM are super-convergent but
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Figure 14. Sequence of adaptive refinement models for the quarter of plate using NS-FEM.

the convergence rate of NS-FEM (r =1.97) is much higher than that of FEM (r =1.67). The
super-convergence of the recovery energy error norm ‖e−eRe‖L2 of NS-FEM almost equal to that
of CS-FEM (or SFEM) using 1 SC for each quadrilateral element [22, 23, 52]; (4) the effectivity
indexes � of the error indicators of both NS-FEM and FEM approach to unity when the mesh is
refined, but the results of NS-FEM are closer to unity than those of FEM, especially for coarse
meshes. The results of effectivity indexes � of the error indicators in Figure 9 are also illustrated

Copyright q 2009 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (2009)
DOI: 10.1002/cnm



ADAPTIVE ANALYSIS USING THE NS-FEM

p=1

50

50

50

100

Figure 15. Model of L-shaped domain.

0 500 1000 1500 2000 2500
1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

4

Degrees of freedom

S
tr

ai
n 

en
er

gy

NSFEM (regular)
NSFEM (adaptive)
FEM (regular)
FEM (adaptive)
Reference solution

Figure 16. Strain energy in the L-shaped problem with applied tractions.

clearly in Figure 8, in which the standard energy error norms are very close to the posteriori
energy error norms for both methods.

These results verify the asymptotically exact property of the error estimator ‖Gu− ẽh‖L2 in
Section 3, and also show that the error estimator ‖Gu− ẽh‖L2 of NS-FEM is more reliable than
that of FEM. In other words, the recovery strain field eRe≡Gu of the NS-FEM is a very good
representation of the exact strain field, and using it to obtain energy error estimates is feasible and
more reliable than using the recovery strain field of the FEM used in this paper.
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Figure 17. Comparison of energy error norms using the error indicator (20) in L-shaped
problem with applied tractions.

Now, we can conduct the adaptive analysis for the problem. The results of the strain energy
and standard energy error norms of NS-FEM and FEM with both uniform and adaptive models
are shown in Figure 10 and Figure 11. First, the results show that the adaptive models for both
NS-FEM and FEM have much higher convergence rates compared to the uniformly refined models.
This demonstrates the effectiveness of the presented adaptive procedure. Second, compared with
the linear FEM, the NS-FEM achieves a better accuracy and higher convergence rate for both
uniform and adaptive models. Third, the upper bound property in the strain energy of the NS-FEM
is always verified during the adaptive procedure.

Figure 12 compares the standard energy error norms and error estimators (20) (the posteriori
energy error norms) of NS-FEM and FEM. The results again show that the standard energy error
norms are very close to the error estimators (20) for both methods, but the results of NS-FEM
are better and have higher convergence rate than those of FEM. Figure 13 again verifies the
asymptotically exact property of the error estimator (20) in which the effectivity indexes of adaptive
schemes for both methods converge to unity when the mesh is refined.

Figure 14 shows the sequence of the models produced during the adaptive refinement steps
using NS-FEM. The results show that the refinement is most active in the regions with significant
stress concentration, as expected.

4.2. L-shaped domain with applied tractions

Consider an L-shaped domain subjected to a unit tension. The dimensions and boundary conditions
are shown in Figure 15. The thickness of the solid is t=1m, and a plane stress problem is
considered. The material parameters of the structure are E=1.0N/m2, �=0.3. In this example, a
stress singularity occurs at the re-entrant corner.

The exact strain energy in this problem is not available. However, it can be estimated through
the procedure of Richardson’s extrapolation [53] from the solutions of the displacement models
and equilibrium models [54]. The estimated strain energy is average of these two extrapo-
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Figure 18. Sequence of adaptive refinement models for the L-shaped domain using NS-FEM.

lated strain energies. As given in Reference [55], the reference strain energy is approximately
15 566.460.

The results of posteriori energy error norms of NS-FEM and FEM using both uniform and
adaptive models versus degrees of freedom (DOF) are shown in Figure 17. Again, the results show
that the adaptive models for both NS-FEM and FEM give higher convergence rate compared to
the uniformly refined models. The results of NS-FEM are better and give higher convergence rate
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Figure 19. Crack problem and half of the domain modeled.

than those of FEM. For this problem, we have not the analytical solution. Therefore, we cannot
show the super-convergence of the recovery energy error norm between the analytical and recovery
strains. However, basing on the convergence rate of the posteriori energy error norm of NS-FEM
(r=0.97) which is almost 1, we can see that the recovery strain is a reliable representation of
the analytical strain and can produce efficiently an optimal convergence in energy norm for this
singular problem.

Figure 16 verifies the upper bound property in the strain energy of the NS-FEM during
the adaptive procedure. Figure 18 shows the some steps of adaptive refinement models using
NS-FEM. The results show clearly that the refinement is focusing on the re-entrant corner where
the concentration of stress occurs.

4.3. Crack problem in linear elasticity

Consider a crack problem in linear elasticity as shown in Figure 19. Data of the structure are
E=1.0N/m2, �=0.3, t=1m. Owing to the symmetry about the x-axis, only half of domain is
modeled. By incorporating the dual analysis [56] and the procedure of Richardson’s extrapolation
with very fine meshes, Beckers [55] proposed a good approximation of the exact strain energy to
be 8085.7610.

This crack problem has a high singularity at the crack tip. As a result, the convergence rate of
the posteriori energy error norms between the recovery and numerical strains using the uniformly
refined models is low (r =0.35 for FEM and r =0.55 for NS-FEM). The adaptive schemes are
therefore very necessary to be applied to improve the convergence rate. The results in Figure 21
show that the posteriori energy error norms of adaptive models for both NS-FEM and FEM have
higher convergence rate compared to the uniformly refined models, but the results of NS-FEM
are better and have higher convergence rate than those of FEM. Without having the analytical
solution, we cannot show the super-convergence of the recovery energy error norm between the
analytical and recovery strains. However, based on the convergence rate of the posteriori energy
error norm of NS-FEM (r=0.97) which is almost 1, we can see that the recovery strain is a
reliable representation of the analytical strain and can produce efficiently an optimal convergence
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Figure 20. Convergence of strain energy of the crack problem.
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Figure 21. Comparison of strain energy error norms of crack problem.

in energy norm for this strongly singular case. Note that, for this problem, adaptive schemes using
enrichment techniques as in the XFEM [57, 58] also give very good results.

Figure 20 verifies the upper bound property in the strain energy of the NS-FEM during the
adaptive procedure. Figure 22 shows the some steps of adaptive refinement models using NS-FEM.
The results show clearly that the refinement is focusing on the crack tip where the singularity
appears.
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Figure 22. Sequence of adaptive refinement models for the crack problem using NS-FEM.

5. CONCLUSION

In this work, an adaptive procedure for NS-FEM using triangular elements is proposed. An error
indicator based on the recovery strain is proposed and shown to be asymptotically exact by
numerical experiments through an effectivity index, and a simple refinement strategy using the
newest node bisection is briefly presented. The numerical results of some benchmark problems
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show that the present adaptive procedure can accurately catch the appearance of the steep gradient
of stresses and the occurrence of refinement is concentrated properly. The upper bound property in
the strain energy of the NS-FEM is always verified during the adaptive procedure, and the effectivity
index of the proposed error indicator approaches unity faster than that of FEM. Compared with
uniformly refined models, adaptive models achieve very high reliability and effectiveness.
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